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Introduction

e Desired characteristics in prediction model: accuracy, confidence,
scalability, interpretability

e Gaussian Process regression

Predicts a distribution (mean and variance)
Captures non-linear relationship in data

e Unknown sparsity structure
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Calculating complete inverse covariance matrix will give much denser
matrix

Low rank approximation techniques address scalability but destroy
model interpretability

Can reveal important causal relationships in data
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e Sparse Gaussian Process regression using estimation of a sparse
inverse covariance matrix

e Can be parallelized for scaling to large data sets

e lllustrative application on a climate domain data set
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Background: Gaussian Process regression

e Training data

e X: data matrix of observations n x d
e y: vector of target data n x 1

e Test data

e X*: matrix of new observations n* x d

o Covariance function: Kj; = k(x;, x;), K = k(X[ x;)

Prediction equation

v = KNI+ K)ly
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Inverse covariance estimation

e Multivariate Gaussian distribution: x; ~ A (p, X)
° Z,’J =0= P(X,‘Xj) =0 and Z;Jl =0= P(X,‘Xj‘X,;’,J’) =0

e Gaussian Process

e Defines a distribution over functions, specified by mean function and
covariance function

f(xi) ~ GP(m(x;), k(xj, x;))

o m(x;) = E[f(xi)] and k(xi,x;) = E[f(x;) — m(x;)][f(x;) — m(x;)]
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Inverse covariance estimation

e Multivariate Gaussian distribution: x; ~ A (p, X)
° Z,’J =0= P(X,‘Xj) =0 and Z;Jl =0= P(X,‘Xj‘X,;’,j) =0

e Gaussian Process

e Defines a distribution over functions, specified by mean function and
covariance function

f(xi) ~ GP(m(x;), k(xj, x;))

o m(x;) = E[f(xi)] and k(xi,x;) = E[f(x;) — m(x;)][f(x;) — m(x;)]

Covariance selection for graphical models is equivalent to inverse
covariance matrix estimation in Gaussian Process
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Inverse covariance estimation

e Inverse covariance estimation gives relevant conditional independence

information

Figure: Sample location in India, kernel and inverse kernel matrix
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Sparse inverse covariance estimation

e Minimize the pseudo negative log likelihood

Maximum likelihood estimation

Tr(KS) — log det(S)
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Sparse inverse covariance estimation

e Minimize the pseudo negative log likelihood

Maximum likelihood estimation

Tr(KS) — log det(S)

e Induce sparsity using the ¢; regularizer

Sparse maximum likelihood estimation

Tr(KS) — log det(S) + M || S]]
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Sparse inverse covariance estimation

SRl

Figure: Inverse (left) and sparse inverse (right)
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Alternating direction method of multipliers

e Decomposition algorithm for solving convex optimization problems

e Based on iterative scatter and gather operations on the augmented
Lagrangian

e Solves problems of the form:

min  Gi(x) + Go(y), subjectto Ax—y =0, xeR", yeR™
Xy

),
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Alternating direction method of multipliers

e Decomposition algorithm for solving convex optimization problems

e Based on iterative scatter and gather operations on the augmented
Lagrangian
e Solves problems of the form:

min  Gi(x) + Go(y), subjectto Ax—y =0, xeR", yeR™
X,y

e Augmented Lagrangian:
Ly(x.y,2) = Gi(x) + Ga(y) + 2" (Ax = y) + p/2[|Ax — ylI3

e lterative update equations:
t+1 : tT t]|2
X = mxln{Gl(x)—i—z Ax+p/2||Ax —y H2}
: 2
y™h = min {Gz(y) — 2Ty + p/2 || At - yH2}
Z1r+1 — St —i—p(AXHl _yt+1)
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SPI-GP using ADMM

min  Tr(KS) — log det(S) + A ||Y|l; subjectto S—Y =0
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SPI-GP using ADMM

min  Tr(KS) — log det(S) + A ||Y|l; subjectto S—Y =0

Iterative equations:
St = min(Tr(KS) — log det(S) + p/2|S — Y* + P*|| )
yt+l myin (MYl +p/2)S5 =Y+ PY|p)

Pt+1 — Pt + (St+1 _ Yt+1)
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SPI-GP using ADMM

o Further simplification:

5t+1 — QEQT

 where [Q ] = eig(p(¥* — P) - K), & = 1T

e Also,
1 1
Y™ = SoftThreshold,, (55+ + P,-E-)
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lllustrative example

e Data: A 21 year (1982-2002) climate data consisting of NCEP/NCAR
features cross-matched with data from NOAA/AVHRR

e multiple features, monthly averages, recorded at 0.5° resolution over
the earth’s surface

e Example regression problem: Precipitation prediction in the Indian
subcontinent in the month of August based on past precipitation data

e Accuracy measure: Normalized mean squared error

e Results

y | 1982 | 1986 | 1990 | 1994 | 1998 |

Full-GP || 0.695 | 0.664 | 0.611 | 0.651 | 0.669
SPI-GP || 0.6912 | 0.664 | 0.605 | 0.650 | 0.667

Table: NMSE of Gaussian Process regression.
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Experimental results: Precipitation network in SPI-GP

Figure: Evolution of the climate network over 20 years based on precipitation

CIDU'11 Experimental results 14/16



Experimental results: scalability
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Figure: Scalability of SPI-GP using ADMM
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Developed a method for sparse Gaussian Process regression that
allows us to build a parsimonious (interpretable) model for large data
sets

Replaced the kernel inversion operation with a distributable
optimization based inverse estimation

Demonstrated a good balance of accuracy and interpretability for the
Gaussian Process regression models.

Future work is to look at other inverse covariance estimation

techniques and apply this method on specific climate domain
applications in collaboration with domain scientists
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